A novel hybrid multi-objective immune algorithm with adaptive differential evolution
نویسندگان
چکیده
In this paper, we propose a novel hybrid multi-objective immune algorithm with adaptive differential evolution, named ADE-MOIA, in which the introduction of differential evolution (DE) into multiobjective immune algorithm (MOIA) combines their respective advantages and thus enhances the robustness to solve various kinds of MOPs. In ADE-MOIA, in order to effectively cooperate DE with MOIA, we present a novel adaptive DE operator, which includes a suitable parent selection strategy and a novel adaptive parameter control approach. When performing DE operation, two parents are respectively picked from the current evolved and dominated population in order to provide a correct evolutionary direction. Moreover, based on the evolutionary progress and the success rate of offspring, the crossover rate and scaling factor in DE operator are adaptively varied for each individual. The proposed adaptive DE operator is able to improve both of the convergence speed and population diversity, which are validated by the experimental studies. When comparing ADE-MOIA with several nature-inspired heuristic algorithms, such as NSGA-II, SPEA2, AbYSS, MOEA/D-DE, MIMO and DMOPSO, simulations show that ADE-MOIA performs better on most of 21 well-known benchmark problems. & 2015 Published by Elsevier Ltd.
منابع مشابه
A Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملA Hybrid Fire Fly and Differential Evolution Algorithm for Optimization of a Mixed Repairable and Non-Repairable System Reliability Problem
In this paper, a hybrid meta-heuristic approach is proposed to optimize the mathematical model of a system with mixed repairable and non-repairable components. In this system, repairable and non-repairable components are connected in series. Redundant components and preventive maintenance strategies are applied for non-repairable and repairable components, respectively. The problem is formulate...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملMulti-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & OR
دوره 62 شماره
صفحات -
تاریخ انتشار 2015